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Abstract—Effects of buoyancy force on forced laminar convective heat transfer in a uniformly heated
horizontal tube may not be neglected at large Re Ra. This 2nd report deals with a theoretical investigation
of this problem on a fully developed laminar flow and compares the results with experimental results

reported in the 1st report.

In order to back up assumptions made in the following analysis, patterns of secondary flow due to
buoyancy are observed in flow visualization experiments. An approximate solution for very large Re Ra
is obtained. Nusselt numbers are shown as a function of Re Ra and Pr and are shown to be in fairly good
agreement with experimental results on air. Resistance coefficients are also obtained as a function of

Re Ra and Pr.
NOMENCLATURE
a, inside radius of a tube;
C, dimensionless pressure gradient ¥,

along the tube axis;

C, specific heat of fluid at constant
pressure;

g, gravitational acceleration;

P, pressure;

q. heat flux at the wall;

r, co-ordinate in radial direction;

t, fluid temperature;;

Ly wall temperature ;

Lo mixed mean temperature ;

U, V,W, x, yand z component of velocity
in a core flow;

u, 0, w, r, ¢ and z component of velocity
in a boundary layer;

.. mean velocity in the axial direc-
tion;

X, horizontal co-ordinate in a cross

t Professor.

t Assistant professor, Department of Mechanical Engi-
neering, Ehime University, Matsuyama, Ehime.

section perpendicular to the tube
axis;
vertical co-ordinate in a cross
section perpendicular to the tube
axis;

z, co-ordinate in the axial direction;

Nu, Nusselt number, Nu = 2aa/4;

Pr, Prandtl number, Pr = v/x;

Ra, Rayleigh number, Ra = gfa*t/xv
= Ra*/16, Ra* is conventional
Rayleigh number;

Re, Reynolds number, Re = 2aW,,/v.

Greek symbols

o, heat-transfer coefficient in the fully
developed region;

B. coefficient of volumetric expan-
sion;

s specific weight;

4, 0r, thickness of the velocity and the
thermal boundary layer;

g, ratio of thicknesses of boundary
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layer, { = 0/0r;
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. dimensionless temperature in a
core flow, @ = gpa(t, — H)/v?;

0, dimensionless temperature in the
boundary layer, 8 = gpa’(t, —
/v,

%, thermal diffusivity of fluid;

A, resistance coefficient ;

A, thermal conductivity of fluid;

v, kinematic viscosity;

¢, co-ordinate, £ = 1 — r/a;

o, density of fluid;

T, temperature gradient along the
tube axis, T = dt,/dz;

é. circumferential co-ordinate from
the bottom of a cross section
perpendicular to the tube axis.

Subscripts

c, value at the tube axis;

0, value at the tube wall;

m, mean value in the circumferential
direction;

o, value at the outer side of the
velocity boundary layer;

o1, value at the outer side of the

thermal boundary layer.

1. INTRODUCTION

CONCERNING heat transfer to a fully developed
laminar flow in a uniformly heated straight
circular tube, it is well-known that when the
flow has the Poiseuille velocity distribution, the
Nusselt number is 48/11. However, when the
products of Reynolds number (Re) and Rayleigh
number (Ra) are large, effects of free convection
are unable to be neglected A theoretical
analysis of this problem was done by Morton
[1] by means of a perturbation method, and the
result was shown by the form of the positive
power series for ReRa, but the applicable
region is limited to Re Ra < 3000. Recently, the
experimental work for local Nusselt numbers
has been carried out by McComas and Eckert
[2]

It is worthwhile emphasizing that in laminar
convective heat transfer in a uniformly heated
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tube, the Nusselt number is 48/11 when the
temperature difference between fluid and tube,
wall is negligibly small. However, in a practical
case, when the temperature difference would be
very large, velocity profiles are very different
from the Poiseuille profile and the flow should
not be analysed by a perturbation method. We
[3] have reported on the results of heat-transfer
experiments in air at large ReRa and have
shown that the velocity and temperature profiles
are much different from those obtained from an
analysis neglecting secondary flows or calculated
by a perturbation method. In the present report,
a theoretical analysis for large ReRa is treated
under the assumption based on the 1st report
and observations of flows.

Flows in a curved tube, including a strong
secondary flow due to centrifugal force, have
been investigated in several papers [4, 5, 6, 7].
Analytical methods in those papers are useful
for solving the problems such as a secondary
flow due to other body forces., in our case
buoyancy, because the problem for large Re Ra
in a horizontal straight tube is considered to
correspond to that for large Dean number in a
curved tube. However, in an analysis of flow
and temperature fields including a secondary
flow due to buoyancy, there is an essentially
different point which is required to simul-
taneously solve momentum and energy equa-
tions.

2. OBSERVATION OF FLOW PATTERNS
WITH SECONDARY FLOW

As the product of ReRa reaches about 10°,
the velocity and the temperature distributions
in a cross section perpendicular to a tube axis
show a remarkable difference from those of
Poiseuille flow, as shown in the 1st report. The
region of sharp change of velocity and tempera-
ture profiles is affected by a pair of vortices
symmetrical against a vertical plane containing
the tube axis. In order to confirm patterns of this
secondary flow at large ReRa, visualization
experiments are done.

The apparatus for visualization is almost
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similar to that in the st report, but the settling
chamber has an electrical heater in it and the
test section consists of transparent double tubes.
Air heated in the settling chamber is sent to the
brass circular tube having a 30-mm LD. and 3 m
in length. Downstream from the entrance region,
the heat-transfer section is installed. This section
of transparent double tube is 30-mm in inner
diameter and 37 m in length, and cooling air
flows in an upstream direction to keep the inner
wall temperature gradient in the axial direction
constant. Smoke of NH,Cl is introduced into
the air flow in the inner tube at the inlet of the
heat-transfer section and the pattern of smoke is
photographed. The section for observation is
200-mm long and 500-mm upstream from the
tube end, and only this part is illuminated. A
few examples of these photographs are shown
in Fig. 1. As shown in Fig. 1, the secondary flow
forms a pair of vortices, which are symmetrical
to the vertical plane and the centers of vortices
move closer to the tube wall as Re Ra increases.
Therefore, at large ReRa, it is expected that in
heating the fluid, the layer where the flow goes
up along the wall tends to become thinner as
ReRa increases, and the core flow, with a
vertically descending component between both
vortices, occupies most of the cross section.

Based on the experiments mentioned above
and the results in the 1st report, a flow in a
horizontal tube with a secondary flow caused by
buoyancy at large ReRa is analyzed in the
following part. The flow in the tube may be
divided into a flow in a thin layer along the tube
wall and a flow in a core region. In the thin
layer, velocity and temperature fields are affected
by viscosity and thermal conductivity, and
boundary-layer approximation may be applied
in an analysis. On the other hand, in the core
region, velocity and temperature fields are
affected mainly by the secondary flow and the
effects of viscosity and thermal conductivity may
be disregarded.

When the temperature of the tube is higher
than that of the fluid, the fluid in the core region
goes down due to gravitational force, stagnates
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at the bottom, goes upwards in the boundary
layer along the wall and stagnates again at the
top, changing its flow direction. In cooling the
fluid, the motion of fluid is quite opposite.

3. ANALYSIS FOR VELOCITY AND
TEMPERATURE DISTRIBUTIONS

3.1. Velocity and temperature distributions in
core region
In a core region, it is assumed that a secondary
flow is vertical and uniform; therefore, it is
convenient to use the Cartesian co-ordinates as
shown in Fig 2. The following dimensionless
quantities are used in the analysis:

Ut = Uayv, V' = Vayv,
Wt = Wayy, P* = a’P/pv?,
+ 42 3 2 ()
7 = gfatt/v?, O = gfa’(t, — t)/v,
x* = x/a, y*t = y/a, 2zt = z/a.

As a fully developed flow is investigated,
OW*/0z* =0, and by the above assumption
for a secondary flow, V* = constant and V*
< 0 in heating the fluid, and V* > 0 in cooling.

When the viscous term and the thermal
conductive term are disregarded under the
assumption stated above, the equations of
motion and energy in the core region become
as follows:

oP*
a0 @
oP*
5y—+ =-0 3
oW+
v F S C (4)
where C = — dP*/0z* is a constant in a fully
developed flow.
2]
-Vt —aF + Wttt =0. (5)

Integration of the above equation leads to the
following relations :

W*=Ww!+(C/Vh)y* ©)
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FG. 2. Co-ordinates.

O =0, + (Wrt*/V¥)y* + (Co* 2V +2)y+2
(7

P* =Pf -0y — (W't 2V ) y*?
—(CTfeV Tyt (8)

where W), @  and P} are the axial velocity
component, the temperature and the pressure at
the tube axis, respectively.

From equations (6) and (7), it is clear that the
positions of W}, and @ /@), locate down-
wards from the center in heating the fluid and
upwards in cooling, Equations (6-8) are ex-
pressed by cylindrical co-ordinates (r, ¢, z) as
follows

W= W - (- feosh O

0=06,- WI;++T+(1 — &cos
+2C%7(1 — &2cosg  (10)
W+ +
Pt =P +(1 - :)cosqb{@,, —z—cVi—u — ¥

Cct*

X cos ¢ + R

a-¢? COSZ¢} (n

hence { =1 — r/a.

3.2. Velocity and temperature distributions in
the boundary layer

It is not easy to obtain an exact solution of
the simultaneous equations of momentum and
energy for boundary-layer flows. Therefore, we
shall try to solve the integral equations of
momentum and energy. Let us describe veloci-
ties and temperature in a boundary layer by
small letters, and use such dimensionless quanti-
ties as given in equation (1). The profile of the
axial velocity is expressed as follows by a
quadratic equation satisfying the boundary
conditions, wi.o =0, (Ow*/0¢),;.;=0 and
wi-s = W3 where W3 is the value of W* at
& = 4 in the core region:

+ o8 €&
w =W5<23—52‘)

The circumferential velocity compoment v*
in the boundary layer is expressed by a cubic
equation satisfying the boundary conditions:
vi=o = 0,vf_; = V* sin ¢ and (v™* /0&),_; = 0
and the continuity condition expressed by the
following equation:

(12)

fu*dé = —V*(1l - 94)sing (13)
0

and vt is
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Fic. 1. Secondary flow pattern.

(a) Re Ra — 2x10*

(b) Re Ra = 9x10* (c) Re Ra — 1-6x 105

facing page 1804
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12V+

sin ¢ . f,(n) (14)

<
||

where
o
filn) = n{(l -n)? - 6 -9+ 4172)}
and
=%

Disregarding the smaller terms in equation (14)
we get

12+

sin ¢ . f5(n) (15)

where

5
fon) = n{(l —n)? - Tﬁ}'

The difference between fi(n) and f5(n) in the
case of & = 01 is very small, as shown in Fig. 3.

°zlooemoooe\
-00

Fi1G. 3. Comparison of f, and f,.

Defining J6; as the thickness of a thermal
boundary layer, the temperature distribution in
the thermal boundary layer is approximated by
a quadratic equation satisfying the boundary
conditions as follows: 0,—o = 0, 0,_;, = O,
(hence ® ;, is a value at £ = 6y in core flow) and
(00/08)¢=s, = 0.

5y
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_ ¢ &
9= 9‘“(25_, -~ 3?) (16)

3.3. Determination of W},0 . and C

In considering the balance of axial forces of a
fluid element enclosed by a tube wall and two
cross sections with an interval dz, we obtain

3 2n 1
w +
dz* ‘[(ac)d‘ﬁ ”{ _<P
00
T T

The left-hand side is a viscous force at the wall
and is expressed by equations (9) and (12) as
follows:

ow* 2y, C
(_52_>0 =5 {Wc - f/_+(1 — J)cos d)}

(18)

é is a function of ¢, but it is considered from the
experimental results and the analysis [7] for a
flow in a curved pipe that variation of  in ¢
direction is small, therefore when 4 is replaced
by its mean value J,, equation (18) becomes,

<6(;”¢+) 52” {W+ - —(1 8,) cos ¢}.
(19)

By integrating equation (17) in substitution of
equation (19), we get

C = 4W}/s,, (20)

The dimensionless mean velocity W} is shown
by Reynolds number from equation (1) as

W, = Re/2.
On the other hand, W,} is expressed as

ey

2n 1
wi =%f{]w+u ~yde + IW+(1
1] Om

-9 dé}d¢-
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Integration of this equation by use of equations
(9) and (12), leads to

Wa =W 1-%5,+%07). (22

From equations (21) and (22), W is given as
follows:

Re 1
+ —_—
We=ga-gs,+305 P
From equation (20), we obtain
C = 2Re 1 (24)

O (1—38, + 357
When 6, is sufficiently small compared with
unity, W} and C are shown as follows:

W! = Re/2 (25)
C = 2Re/$,, (26)

Considering heat balance of a fluid element,
we have

2n
W, Prtt = % d¢.
A
0

Substitution of equations (10) and (16) in the
right side of equation (27) leads to

27)

4, Ct*

W,: Pr1:+= 3:(@5+W> (28)
where {, = 6,/0r, and Pr t* is given by
Rayleigh number as Prt* = Ra. By substituting
equations (21) and (24) in equation (28), @ is
shown as follows:

ReR 1 4 1
eRa 5 {

O =% "ML VP

1
. 29
e et A
When §,, < 1, equation (29) can be written as,
ReRa 1 4 1
=0l — S 0
O="73 ‘Sm{cm Vg Pr} (0

From the above relations, velocity and tem-
perature distributions are shown as functions
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of ¢ and ¢ with unknown quantities V7, §,,
and ¢,

3.4. Boundary-layer equations

The thickness of a boundary layer is assumed
to be sufficiently small compared with the
radius of the tube at large Re Ra. Before carrying
out an analysis, we have to investigate the order
of magnitude of the terms in the fundamental
equations.

The following dimensionless quantities are
used in the order estimation.

v = v/vmaxv u = u/vmaxa w'= W/Wm*
P = Plpvha. 0 = (t, — /1, — 1),

E=1—r/a, zt = z/a

Hence v,,, is the maximum value of circum-
ferential velocity component, W, the mean
value of axial velocity component and ¢, the
temperature at the center of the tube.

Neglecting smaller terms than 0(5) in the
equations of motion and energy and con-
sidering &€ = 0(5), v' = 0(1), ' = 0(J) and 6" =
0(1), we obtain the fundamental equations for
the boundary layer. These equations are rep-
resented by use of the same dimensionless
quantities as equation (1) as follows:

continuity equation:

+ +
u” _ v 31)
a¢ o
equation of motion:
+
_pt2 77
v P + 6cos ¢ (32)
_u+ _av_+. + U+ 6_Ut = — 6_1-)*-
o¢ o o
ot ,
+ Fr — @sin¢ (33)
ow* ow”* *wt
+ - + _ A 4
u 3 +v Py C 3 (34)
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energy equation:

1 0%

— trt=—-———=, (35
+w't Prog® (35)

where the dissipation and pressure terms in the

energy equation are neglected because Mach

number is small.

3.5. Integral equation of momentum

3.5.1. Equation in axial direction. Integrating
equation (34) from zero to & with respect to ¢
by the aid of equation (31), the integral equation
of momentum is obtained as

d

d
aW?%J.v d£+a¢jv+w+dé—c.é

ow*
- . (36
(%), o
The integrals in this equation are computable

by means of equations (9), (12) and (15). Re-
placing ¢ with its mean value §,,, the result is

~3C(1 —$cos? ) + W V™ cos ¢

2 ; C
= 5M(W V+cos¢)

Taking the mean value of equation (37) over ¢,
equation (37) is reduced as follows:

C = 4W?}/s,,

This is the same relation as equation (20) ob-
tained from the balance of axial forces. In other
words, the profiles assumed by equations (12)
and (15) satisfy the mean value of equation (36)
over ¢, but it does not mean that they satisfy
equation (36) at any value of ¢. The first term
of the left side in equation (37) is a function of ¢,
but the variation from the mean value is small
compared with the second term as shown in
Fig 4; therefore, the first term can be replaced
by the mean value —C/2 and the relation be-
tween V™ and §,, is led from the coefficients of
cos ¢ in equation (37)

V*.6,= 120

(37

(38)
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FIG. 4. Variation of each term along ¢ in equation (37).

where we choose the positive sign for cooling
the fluid and the negative sign for heating. The
comparison of the variations in ¢ for each term
of equation (37) is shown in Fig. 4, by use of
equation (38).

3.5.2. Equation in circumferential direction. As
equations (32) and (33) contain the velocity
components and the temperature, integral limits
must be carefully taken.

(a) d<or(l <)

The pressure term in equation (33) can be
obtained by integrating equation (32) from ¢
to d with respect to ¢ and shown as

. F]

Pt 0 j‘ ‘2
- = d + V“sm2 Oy — &

a¢f9cos¢d{ + 2= p"T

where P;_ shows the value of equation (11) at
& =06r

The integral momentum equation of the
boundary layer in the circumferential direction
is obtained by substitution of the above equation
m equation (33) and integrating it from zero to
or with respect to £.
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é

smqbaquv dé - V+2s1n¢——

o¢

L)

x (6 — &) sing + ijv”dé

+ V”——
0¢

(07 — O)sin? ¢ = —J0P+dé

o¢
[+
é
ov*
av3

)—!03in¢df. (39
0

Substituting equations (15) and (16), equation
(39) can be integrated. When ér, is sufficiently
small compared with unity, and small terms in
it are neglected, it is reduced as follows:

seyes . _1s2
355, 3,
1/1 4 1
R o [
X eR“{s(c,,, V+253,Pr)
cos ¢ cos? ¢ vt
~2vis, Pr i VISLPr }+ 25 (0

Eliminating V* from equations (38) and (40),
the relation between J,, and {,, is obtained.

384 1
7 53cos¢
1 &2 1(Pr 1
=3¢, Pr ReR“{g(a B 5)
_cos¢ cost¢)  12,/20
2720 T 720 }i 5o D

Taking the mean value of equation (41) over ¢.

The other relation for §,, and (, is found
from the coefficients of cos ¢ of equation (41) as

5 (2304 20\ (L P}
m 7 ReRa/’

(42)

(43)
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A discussion of equations (42) and (43), will be
made later.

(b) 6=26r((21)

In the same way as the case of § < &y, inte-
grating equations (32) and (33), we obtain

P') I
a +

smd)a(ij d€+%J‘ 24¢

666
= ad)jf +2d£d§————ff000s¢dédé

%, oP; ov
—%J‘J@cosd)d{dé a¢6 (a§>
T

J‘Bsm¢dé—- j sin ¢ d&. (44)

Equation (44) can be integrated, and as long as
6, is very small compared with unity, small
terms may be neglected, and the result is equal
to equation (41), d,, is also shown by equation
(42) or (43).

3.6. Integral equation of energy

3.6.1. 6 < 65, ({ < 1). Considering that the
velocity profile in the core region can be used
for the region of & < ¢ < Jy, the energy integral
equation becomes

)

0

i, .
@,,T%dec+@,,,5$V+(5T—5)sm¢
06 or
6¢£0U dé——d—)V"mn(ﬁdef

] o
+ + + + — 00
+1 jw dé + 1 jW dé (65) (45)
0 %

Disregarding small terms,
equation (45)

we obtain from
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(1440, - %c&o(acw cos ¢ — Wit

+

Crt
cos? ¢ +

2y +2°08 ¢) + Glm — 40

+

sin? ¢ cos ¢>

C
><<Wc+t+sin2¢— VT+
Wit C:*
- I;“L cos¢+2V+zcos )

20,
= ﬁ <@ ¢
(46)

By taking the mean value of equation (46) over
¢, it reduces to

Wit 20, Cctt
2 Pram(@° * 4V+2)‘

This relation satisfies equation (28) obtained
from heat balance.

From coefficients of cos ¢ of equation (46),
we obtain

2, Wit

_4 1r2 + - —c
(1 SCm + SCm)@cV Pr 6", V+ -

(47)

By substituting equations (25), (30) and (38)
in equation (47), the following equation is
introduced:

{3 Pr— (4(5Pr* + 4Pr — 10)

+ 5{,, Pr(4Pr + 1) — 25Pr* = (. 48)
The thickness ratio {,, = 4,,/0r, is given as a
function of only Prandtl number and its
relation is shown in Fig. 5 and {, <1 cor-
responds to Pr = 1-105, For a specific Prandtl
number, the terms in equation (46) vary with ¢
and it is shown in Fig. 6 for Pr = 1-105. Compu-
tation of equations (42) and (43) by use of
equation (48) shows that they are in agreement
with at most 5 per cent difference for Pr = 1-105;
therefore, equation (42) will be used to calculate
O

3.62. 6 =2 dp, ({ = 1). Considering that the
temperature profile in the core region can be
extended to the region of &= &= 65, the
energy integral equation is written as follows:
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o 3
@66¢JU dé—(—aa ot dé—% vt dé
]

+71 4[ d¢ = (ZZ) 49)

[o]

I \5\\
= |

/

, e

Em

0 \ 2 3
Pr

Fi1G. 5. Relations between {,, and Pr.

Calculating the integrals in this equation, we
obtain

1 41 11
— _CZ(I - gz; +§E><QCV+ COSd)
C +
- Wittt cos? ¢ + 2—1;—2cos3¢>
+<1 ! 1 41 +11
& 5 SC3
+
X (W;‘z+ sin® ¢ — CVT+ sin® ¢ . cos qb)
W+ + C +
(@c——;é—cos¢+ﬁ+—5cos2¢).

=
(50)

Pré,,

The mean value over ¢ of equation (50) satisfies
equation (28), and from the coefficients of cos ¢
of equation (50), we obtain

1088 + 5(3 Pr — (25 Pr + 4) (2 Pr

+ (20 Pr + 1)¢,,Pr— 5Pr* =0. (51)

This relation is shown in Fig 5 and (,, > 1
corresponds to Pr > 1-105.
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F1G. 6. Variation of each term along ¢ in equation (46).

Thus, V™, 4, and (,, are determined respec-
tively by equations (38, 42) and (48) or (51).

4. NUSSELT NUMBER

Heat-transfer coefficients « in a fully de-
veloped region are defined by

o= qf(t, — t) (52)

where ¢ is the mean heat flux over ¢ at a section

z, given by
}' 2r
ot
170 f (5:),=.,“¢-
0

Nusselt number is defined by

(53)

2a0 4 {, Ctt
“-T—@:a—m‘@c*m) G4
where @, is a dimensionless mixed mean

temperature, shown by @, = gfa> (t,, — t,)/v?
and can be calculated as follows

for &,

= 6Tm,
70,

o, nw+{“@.w+(1 - Hdsd
0

1

L2y

f@ wH(l — &) dEde

N

+

Oty

é,
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0
+ J 0.wH(l — é)dédd)}

S1rm

!——15

(=]

for 6,, < Orm

noT,

on nW+{“(@‘W*(1—€)déd¢
n d °
‘|
0

-

re.w+(1 — &) dedg

dTm
n 0

+ 5”Jf).w+(l - é)didq&}.

'm

Assuming J,, and d4,, < 1 and neglecting smaller
terms, the integration of the above equation
leads to

3Ctt

i
Substitution of equation (55) into equation

(51) introduces Nusselt number ratio Nu/Nuy, as

14
Nu _ o189 ReRI
Nu, 1 1 o
., T 0P

where Nu, is Nusselt number for forced con-
vective heat transfer under the assumption of
Poiseuille flow in a uniformly heated tube and
Nu, = 48/11, {,, is shown by equation (48) or
(51). Equation (56) is applicable in a region
when Prandtl number is not far away from
unity.

0,=06,+ (55)

(56)

5. RESISTANCE COEFFICIENT

Resistance coefficients A for a fully developed
forced laminar flow in a horizontal tube are
also affected by a secondary flow. The definition
of resistance coefficient is expressed by

4C
W+ 2 '
The assumption that §,, < 1 and substitution of

A=
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equations (21) and (26) in this equation give A
and the ratio of resistance coefficients, A/4, is
calculated by

4 1
Ao B

where A, shows the resistance coefficient for
Poiseuille flow and A, = 64/Re. From equation
(57), it is clear that resistance coefficients also
increase with increasing ReRa. An increase of
Prandtl number causes a decrease of resistance
coefficient, because the thickness of the velocity
boundary layer increases as shown by equation
(42).

6. DISCUSSION OF RESULTS
6.1. Velocity and temperature distributions
The profiles of velocity and temperature in
the core region are given by equations (9) and
(10) and expressed as follows:

wt {+ 2 r 3
VV‘_+ = _$‘—Icos¢
Py ~ /e -
;—=1i ;r‘/a ‘%cosd)
¢ S5—-—1 > (58)
“m
2
+——2—(£) cos? ¢
sPr_\e
{m J

where the double sign takes positive for heating
the fluid and negative for cooling, and the profile
in ¢ = 0 or = shows one in the vertical plane
and that in ¢ = n/2 or 3n/2 shows one in the
horizontal plane. These equations were ob-
tained on the assumption that 4, <1 or
Orm €1 and the condition for 4, <01 is
obtained when ReRa = 667 x 107 for Pr =
072 from equation (42). These results are
asymptotic solutions for large ReRa. Com-
parisons with experimental data [3] with ReRa
of about 10° for air (Pr = 0-72) are shown in
Fig 7 for velocity profile and in Fig. 8 for
temperature profile.

Equation (58) does not contain ReRa but
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the experimental results are affected by ReRa
and tend to approach to the theoretical profile
with increasing ReRa. This is due to the fact
that experiments are not done at ReRa large
enough to neglect 8, compared with unity.
In calculating heat-transfer coefficients, a mixed
mean temperature in the core region is an im-
portant factor, and in spite of little difference
between theoretical and experimental profiles,
the mixed mean temperatures in both profiles are
nearly equal, therefore it is considered that
heat-transfer coefficients calculated from experi-
mental results are in rather good agreement
with theoretical prediction.
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6.2. Nusselt number
From equation (56), we obtain

Nu/Nu, = 0-1634 (ReRa)*  for Pr =072
(59)

Nu/Nuy = 0:1929(ReRa)*  for Pr= 1.
(60)

With Prandtl number as a parameter, the
relations of Nu/Nu, vs. ReRa are shown in
Fig. 9. Morton’s solutions for Pr = 1, 072 are
also shown in the range of small ReRa, and
the solution is given by

Nu

— =1 + (01036 — 0-0007 Pr
Nu,

ReRa\?
+0'3334Pr2)< ¢ “)

4608

where the coefficients of the second term are
our collected values, because Morton’s results
have included some errors.

YASUO MORI and KOZO FUTAGAMI

with the experimental result, because the theo-
retical curve extended to the range of ReRa =
10* is not much different from the Morton’s
curve.

In the present analysis, for the velocity and
the temperature distributions in the boundary
layer, simple profiles are assumed and particu-
larly in the thin part between the velocity and
the thermal boundary layer, the approximation
is not good enough. Consequently, equation
(57) is correctly applicable to fluids having
Prandtl number not far from unity.

In case a large temperature difference exists
between fluid and wall, the effect of temperature
dependent physical properties should be taken
into account with effects of secondary flows.

7. CONCLUSION

Visual experiments and a theoretical analysis
for effects of a secondary flow on forced con-
vective laminar heat transfer and flow resistance
for a fully developed flow in a horizontal tube

t——+—+
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F1G. 9. Nu/Nuy—Re Ra diagram.

The experimental data for air (Pr = 0-72),
expressed in the 1st report are also shown by
circles in Fig. 9. For Pr = 0-72, Nusselt number
begins to increase at ReRa = 10° from Nu,
(=48/11) with increasing ReRa, due to a
secondary flow and in very large ReRa, it is
given by equation (59). As shown in Fig. 9, the
theoretical results may be applicable in the
range of ReRa > 10* and is in good agreement

with constant heat flux at the wall have been
done and the results obtained are summarized
below.

(1) From visual experiments, it is confirmed
that the center of the vortex of the secondary
flow, due to free convection, comes near to
the tube wall with increasing Re Ra.

(2) On the assumption of a boundary layer
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along the tube wall and by use of the
boundary-layer integral method, the rela-
tions between Nusselt number and ReRa
are obtained in the region of Pr not far
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Résumé-Les effets de la force d’Archiméde sur le transport de chaleur par convection forcée laminaire
dans un tube horizontal chauffé uniformement ne peut pas étre négligé pour de grandes valeurs de ReRa.
Ce deuxiéme rapport at rait & une étude théorique de ce probléme dans un écoulement laminaire entiéret
ment établi et 'on compare ses résultats avec les résultats expérimentaux exposés dans le premier rapport.

Afin de justifier les hypothé&ses effectuées dans I’analyse qui suit, les configurations d’écoulement second-
aire dues 4 la force d’Archiméde sont observées dans des expériences de visualisation d’écoulement. Une
solution approchée pour de trés grands ReRa est obtenue. Les nombres de Nusselt sont fonctions de ReRa
et de Pr, et en assez bon accord avec les résultats expérimentaux sur I’air. Les coefficients de résistance sont

aussi obtenus en fonction de ReRa et de Pr.

Zusammenfassung—Der Einfluss der Auftriebskrifte auf den Wirmetibergang bei erzwungener Laminar-
stromung in einem gleichmissig beheizten waagerechten Rohr darf bei grossen ReRa nicht vernachlissigt
werden. Diese zweite Arbeit behandelt eine theoretische Untersuchung des Problems fiir voll ausgebildete
Laminarstromung und vergleicht die Ergebnisse mit den experimentellen Werten der ersten Arbeit.

Um Annahmen der Analyse zu bekriftigen, wurden die Muster der sekunddren Auftriebsstromung
sichtbar gemacht und beobachtet. Eine Naherungslosung fiir sehr grosse Re Ra liess sich erhalten. Nusselt-
Zahlen sind als Funktion von Re Ra und Pr wiedergegeben, und es zeigt sich ein ziemlich guter Zusammen-
hang mit Versuchswerten in Luft. Auch Widerstandskoeffizienten sind als Funktion von Re Ra und Pr

angegeben.

Aunoranua—I[lIpn Gonpmux Re Ra wenpan npenefpeds BAMAHHEM IOXBEMHOH CHIN HA
Tenno00MeH B JIaMUHAPHOM NOTOKE NPH BHHYISHHO! KOHBEKINK B OXHODOXHO HArpeBaeMOl
FOPM3OHTAALHOM TPyGe. B aTol cTaThe NaeTcA TEOpETHYECKOE MCCIEROBaHHE BTOrO BOHpOCA
TIPH TIOJIHOCTHIO PAIBUTOM JAMUHAPHOM TEYEHHH, W De3yIbTATH CPaBHMBAIOTCA € 3KCHEPH-
MEHTANLHHIMH [AHHHMH, NPHBeCHHHMM B Tnpefunpaymedi crarbe. A nogTBepIZeHHSA
ROMyILEeHNH, CIETAHHBX B JAaHHOM QHAJIHM3E, KAPTHHH BTOPMYHOTO IOTOKA 33 CYeT MOKLEMHON
CHIH HAOIIONAINCh C MOMOINBI0 BH3Yasmsanuy noroka. Ilomyveno npubimxenHoe peienue
npu oveHb 6onbmux Re Ra. [Toxasano, 4o uucna Hyccenpra, BrpareHHbe B BUue QYHKIUBK
Re Ra u Pr, Xopomo0 COTTIACYIOTCA € DKCHEPHMEHTANLHEIMM De3yJIbTAaTaMH NI BOBAYXA.
Hosddunuenrl cOnpOTURICHNA TAKIKE HOIYyYeHH B Buae PpyHxuuu Re Ra u Pr.



