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Abstract-Effects of buoyancy force on forced laminar convective heat transfer in a uniformly heated 
horizontal tube may not be neglected at large Re Ra. This 2nd report deals with a theoretical investigation 
of this problem on a fully developed laminar flow and compares the results with experimental results 
reported in the 1st report. 

In order to back up assumptions made in the following analysis, patterns of secondary flow due to 
buoyancy are observed in flow visualization experiments. An approximate solution for very large Re Ra 
is obtained. Nusselt numbers are shown as a function of Re Ra and Pr and are shown to be in fairly good 
agreement with experimental results on air. Resistance coefficients are also obtained as a function of 

Re Ra and Pr. 

NOMENCLATURE 

inside radius of a tube ; 
dimensionless pressure gradient 
along the tube axis ; 
specific heat of fluid at constant 
pressure ; 
gravitational acceleration ; 
pressure ; 
heat flux at the wall ; 
co-ordinate in radial direction ; 
fluid temperature ; 
wall temperature ; 
mixed mean temperature ; 
x, y and z component of velocity 
in a core flow; 
I, c$ and z component of velocity 
in a boundary layer; 
mean velocity in the axial direc- 
tion ; 
horizontal co-ordinate in a cross 

Y, 

L, 

Pr, 
Ra, 

Re, 

section perpendicular to the tube 
axis ; 
vertical co-ordinate in a cross 
section perpendicular to the tube 
axis ; 
co-ordinate in the axial direction; 
Nusselt number, Nu = 2aa/l; 
Prandtl number, Pr = v/x; 
Rayleigh number, Ra = gj&z4r/xv 
= Ra*/16, Ra* is conventional 
Rayleigh number ; 
Reynolds number, Re = 2aWJv. 

Greek symbols 

a, heat-transfer coefficient in the fully 
developed region ; 

BY coefficient of volumetric expan- 
sion ; 

Y? specific weight; 

4 &, thickness of the velocity and the 

7 Professor. 
thermal boundary layer ; 

$ Assistant professor, Department of Mechanical Engi- (7 ratio of thicknesses of boundary 
neering, Ehime University, Matsuyama, Ehime. layer, [ = 6/6, ; 
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0, dimensionless temperature in a 
core flow, 0 = g/?a3(t, - t)/v2; 
dimensionless temperature in the 
boundary layer, 8 = gj?a3(t, - 

01v2 ; 
thermal diffusivity of fluid ; 
resistance coefficient ; 
thermal conductivity of fluid ; 
kinematic viscosity ; 
co-ordinate, 5 = 1 - rJa ; 
density of fluid ; 
temperature gradient along the 
tube axis, r = dt,ldz ; 
circumferential co-ordinate from 
the bottom of a cross section 
perpendicular to the tube axis. 

Subscripts 

; 
value at the tube axis; 
value at the tube wall ; 

m, mean value in the circumferential 
direction ; 

6, value at the outer side of the 
velocity boundary layer ; 

6 T? value at the outer side of the 
thermal boundary layer. 

1. INTRODUCTION 

CONCERNING heat transfer to a fully developed 
laminar flow in a uniformly heated straight 
circular tube, it is well-known that when the 
flow has the Poiseuille velocity distribution, the 
Nusselt number is 48/11. However, when the 
products of Reynolds number (Re) and Rayleigh 
number (Ra) are large, effects of free convection 
are unable to be neglected. A theoretical 
analysis of this problem was done by Morton 
[l] by means of a perturbation method, and the 
result was shown by the form of the positive 
power series for ReRa, but the applicable 
region is limited to ReRa < 3000. Recently, the 
experimental work for local Nusselt numbers 
has been carried out by McComas and Eckert 

PI. 
It is worthwhile emphasizing that in laminar 

convective heat transfer in a uniformly heated 

tube, the Nusselt number is 48/11 when the 
temperature difference between fluid and tube, 
wall is negligibly small. However, in a practical 
case, when the temperature difference would be 
very large, velocity profiles are very different 
from the Poiseuille profile and the flow should 
not be analysed by a perturbation method. We 
[3] have reported on the results of heat-transfer 
experiments in air at large Re Ra and have 
shown that the velocity and temperature profiles 
are much different from those obtained from an 
analysis neglecting secondary flows or calculated 
by a perturbation method. In the present report, 
a theoretical analysis for large Re Ra is treated 
under the assumption based on the 1st report 
and observations of flows. 

Flows in a curved tube, including a strong 
secondary flow due to centrifugal force, have 
been investigated in several papers [4, 5, 6, 71. 
Analytical methods in those papers are useful 
for solving the problems such as a secondary 
flow due to other body forces. in our case 
buoyancy, because the problem for large ReRa 
in a horizontal straight tube is considered to 
correspond to that for large Dean number in a 
curved tube. However, in an analysis of flow 
and temperature fields including a secondary 
flow due to buoyancy, there is an essentially 
different point which is required to simul- 
taneously solve momentum and energy equa- 
tions. 

2. OBSERVATION OF FLOW PATTERNS 

WITH SECONDARY FLOW 

As the product of ReRa reaches about lo’, 
the velocity and the temperature distributions 
in a cross section perpendicular to a tube axis 
show a remarkable difference from those of 
Poiseuille flow, as shown in the 1st report. The 
region of sharp change of velocity and tempera- 
ture profiles is affected by a pair of vortices 
symmetrical against a vertical plane containing 
the tube axis. In order to confirm patterns of this 
secondary flow at large ReRa, visualization 
experiments are done. 

The apparatus for visualization is almost 
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similar to that in the 1st report, but the settling 
chamber has an electrical heater in it and the 
test section consists of transparent double tubes. 
Air heated in the settling chamber is sent to the 
brass circular tube having a 30-mm I.D. and 3 m 
in length. Downstream from the entrance region, 
the heat-transfer section is installed. This section 
of transparent double tube is 30-mm in inner 
diameter and 3.7 m in length, and cooling air 
flows in an upstream direction to keep the inner 
wall temperature gradient in the axial direction 
constant. Smoke of NH&l is introduced ‘into 
the air flow in the inner tube at the inlet of the 
heat-transfer section and the pattern of smoke is 
photographed. The section for observation is 
200~mm long and 500~mm upstream from the 
tube end and only this part is illuminated. A 
few examples of these photographs are shown 
in Fig 1. As shown in Fig. 1, the secondary flow 
forms a pair of vortices, which are symmetrical 
to the vertical plane and the centers of vortices 
move closer to the tube wall as Re Ra increases. 
Therefore, at large Re Ra, it is expected that in 
heating the fluid, the layer where the flow goes 
up along the wall tends to become thinner as 
ReRa increases, and the core flow, with a 
vertically descending component between both 
vortices, occupies most of the cross section. 

Based on the experiments mentioned above 
and the results in the 1st report, a flow in a 
horizontal tube with a secondary flow caused by 
buoyancy at large ReRa is analyzed in the 
following part. The flow in the tube may be 
divided into a flow in a thin layer along the tube 
wall and a flow in a core region. In the thin 
layer, velocity and temperature fields are affected 
by viscosity and thermal conductivity, and 
boundary-layer approximation may be applied 
in an analysis. On the other hand, in the core 
region, velocity and temperature fields are 
affected mainly by the secondary flow and the 
effects of viscosity and thermal conductivity may 
be disregarded. 

When the temperature of the tube is higher 
than that of the fluid, the fluid in the core region 
goes down due to gravitational force, stagnates 

at the bottom goes upwards in the boundary 
layer along the wall and stagnates again at the 
top, changing its flow direction. In cooling the 
fluid the motion of fluid is quite opposite. 

3. ANALYSIS FOR VELOCITY AND 

TEMPERATURE DISTRIBUTIONS 

3.1. Velocity and temperature distributions in 
core region 

In a core region, it is assumed that a secondary 
flow is vertical and uniform; therefore, it is 
convenient to use the Cartesian co-ordinates as 
shown in Fig. 2. The following dimensionless 
quantities are used in the analysis: 

U+ = Us/v, I/+ = Vu/v, 

W + = Wa/v, P+ = a2P/pv2, 

z+ = gpa4zJv2, 0 = gfla3(t, - t)/vf 

1 

(1) 

x+ = x/a, y + = y/a, z+ = z/a. 

As a fully developed flow is investigated, 
aw+la z+ = 0, and by the above assumption 
for a secondary flow, I/+ = constant and I/’ 
< 0 in heating the fluid, and I/’ > 0 in cooling. 

When the viscous term and the thermal 
conductive term are disregarded under the 
assumption stated above, the equations of 
motion and energy in the core region become 
as follows : 

apt o - = 
ax+ 

dPt=-Q 
aY+ 

(2) 

(31 

I/+ 
aw+ 
ay+= C 

where C = - aP+/az+ is a constant in a fully 
developed flow. 

- v+ i? + w+z+ = 0. 

aY+ (5) 

Integration of the above equation leads to the 
following relations : 

w+ = w: + (C/V’) y’ (6) 
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FIG. 2. Co-ordinates. 

0 = 0, + (W:r+/V+) yf + (cz+/2V+2)y+2 

(7) 

P+ = P: - o,y+ - (W+z+/2V+)y+2 

- (CZ+/~V+~) Y+~ 0% 

where WC’, 0, and P,’ are the axial velocity 
component, the temperature and the pressure at 
the tube axis, respectively. 

From equations (6) and (7), it is clear that the 
positions of W&;,, and (0 lo,),,,,, locate down- 
wards from the center in heating the fluid and 
upwards in cooling. Equations (6-8) are ex- 
pressed by cylindrical co-ordinates (I, 4, z) as 
follows : 

3.2. Velocity and temperature distributions in 
the boundary layer 

It is not easy to obtain an exact solution of 
the simultaneous equations of momentum and 
energy for boundary-layer flows. Therefore, we 
shall try to solve the integral equations of 
momentum and energy. Let us describe veloci- 
ties and temperature in a boundary layer by 
small letters, and use such dimensionless quanti- 
ties as given in equation (1). The profile of the 
axial velocity is expressed as follows by a 
quadratic equation satisfying the boundary 
conditions, WC’=,, = 0, @~‘/a&,~ = 0 and 
w& = W,+ where W 2 is the value of W+ at 
5 = 6 in the core region: 

The circumferential velocity component U+ 
in the boundary layer is expressed by a cubic 

(IO) equation satisfying the boundary conditions : 
u,‘=() = 0, t& = V+ sin 4 and (au+/Q,, = 0 

W+T’ and the continuity condition expressed by the 
c (1 - 5) 2v+ following equation : 

jdr’dc = - V+(l - &sin4 (13) 

hence [ = 1 - r/a. and u+ is 



FIG. I. Secondary flow pattern. 

(a) Re Ra ~ 2‘~ 10” (b) Re Ra = 9 ,: 10” (c) Re Ra = 16X 10” 

H.M. 
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+_ v - 

where 

fi(rl) = V 
I 
(1 

and 

- 

12v+ 
--$-sin 4 * fib) (14) 

&(6-9~+4$) 

Disregarding the smaller terms in equation (14) 
we get 

v+ = 12v+ 
- 6 sin 4 . fh) (15) 

where 

fi(tl) = tl 
i 
(1 - rl? - g 

1 
. 

The difference between fi(q) and fi(q) in the 
case of 6 = O-1 is very small, as shown in Fig. 3. 

046 - 

-DOT 3 
FIG. 3. Comparison of fl and h. 

Defining 6, as the thickness of a thermal 
boundary layer, the temperature distribution in 
the thermal boundary layer is approximated by 
a quadratic equation satisfying the boundary 
conditions as follows: 13,~~ = 0, Bc =dT = 8 + 
(hence 8 dT is a value at < = bT in core flow) and 
(se/X),=,, = 0. 

(16) 

3.3. Determination of W:, 8, and C 
In considering the balance of axial forces of a 

fluid element enclosed by a tube wall and two 
cross sections with an interval dz, we obtain 

aP+ 
+ pdZ+ 

)I 
(1 - Od~d+. (17) 

The left-hand side is a viscous force at the wall 
and is expressed by equations (9) and (12) as 
follows : 

(F), +: -+1 -s,cos#j 

(18) 

6 is a function of c$, but it is considered from the 
experimental results and the analysis [7] for a 
flow in a curved pipe that variation of 6 in 4 
direction is small, therefore when 6 is replaced 
by its mean value S,,, equation (18) becomes, 

(go = ;{w: - $1 - 6.)&j. 

(19 
By integrating equation (17) in substitution of 

equation (19), we get 

c = 4w:/C?,. (20) 

The dimensionless mean velocity WL is shown 
by Reynolds number from equation (1) as 

W,’ = Re/2. (21) 

On the other hand Wz is expressed as 

1 

w==' 

n 
w+(l - <)d5 + 

s 
w+ (1 

&I 

- t)d5 d4. 

5Y 
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Integration of this equation by use of equations 
(9) and (12) leads to 

w; =WZ(l --&Y,+&?;). (22) 

From equations (21) and (22), W: is given as 
follows : 

W$% 1 

2 (1 --is, +#J 
(23) 

From equation (20) we obtain 

CA!% 1 

&I (1 -$s, +*s;, 
(24) 

When 6, is sufficiently small compared with 
unity, W: and C are shown as follows: 

W: = ReJ2 (25) 

C = 2Re/6,. (26) 

Considering heat balance of a fluid element, 
we have 

2n 

lrw,+ prz+ = 
J( ) 

$ dr$. (27) 

0 
0 

Substitution of equations (10) and (16) in the 
right side of equation (27) leads to 

w;prz+= $$+$) (28) 

where &,, = 6 ,,Jdrm and Pr zi is given by 
Rayleigh number as Pr T+ = Ra. By substituting 
equations (21) and (24) in equation (28) 8, is 
shown as follows : 

0, = 

1 

x (1 -@,t&?j$ 1 . 
(29) 

When 6, 4 1, equation (29) can be written as, 

0, = !y%!& t-__. I 4 1 

V+26i Pr 1 
(30) 

m 

From the above relations, velocity and tem- 
perature distributions are shown as functions 

KOZO FUTAGAMI 

of 5 and 4 with unknown quantities V+, 6, 
and 5,. 

3.4. Boundary-layer equations 
The thickness of a boundary layer is assumed 

to be sufficiently small compared with the 
radius of the tube at large Re Ra. Before carrying 
out an analysis, we have to investigate the order 
of magnitude of the terms in the fundamental 
equations. 

The following dimensionless quantities are 
used in the order estimation. 

u’ = v/v,,, u‘ = UI%ax, w’= w/w,, 

P’ = Plpv;Bx. 8’ = (t, - t)/(t, - t,), 

< = 1 - r/a, z+ = z/a 

Hence v,, is the maximum value of circum- 
ferential velocity component, W, the mean 
value of axial velocity component and t, the 
temperature at the center of the tube. 

Neglecting smaller terms than O(6) in the 
equations of motion and energy and con- 
sidering 5 = O(6), u’ = O(l), u’ = O(6) and 8’ = 
o(l), we obtain the fundamental equations for 
the boundary layer. These equations are rep- 
resented by use of the same dimensionless 
quantities as equation (1) as follows : 

continuity equation : 

au+ 

equation of motion : 

au+ =- 
a+ ’ 

-V +~=~+ecosf#l 
+ au+ + av+ ap+ 

-u x+v w=-T& 

+ a%+ 
p - 8 sin 4 

+ aw+ +a~+ 2 + 

-’ x +’ T= 2 

c+aa; 

(31) 

(32) 

(33) 

(34) 
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energy equation : 

+ ae --u + ae + +_ 
’ ag @+wT l a2e (35) - -j$p 

where the dissipation and pressure terms in the 
energy equation are neglected because Mach 
number is small. 

3.5. Zntegral equation of momentum 
3.5.1. Equation in axial direction. Integrating 

equation (34) from zero to 6 with respect to r 
by the aid of equation (31), the integral equation 
of momentum is obtained as 

aw+ =- (3 at o’ (36) 

The integrals in this equation are computable 
by means of equations (9), (12) and (15). Re- 
pIacing 6 with its mean value 6,, the result is 

-3 C(1 - &OS2 4, + @V: Y+ cos 4 

= -f ( w,+ -+osqs > (37) 
m 

Taking the mean value of equation (37) over 4, 
equation (37) is reduced as follows: 

c = 4W,+/6, 

This is the same relation as equation (20) ob- 
tained from the balance of axial forces. In other 
words, the profiles assumed by equations (12) 
and (15) satisfy the mean value of equation (36) 
over 4, but it does not mean that they satisfy 
equation (36) at any value of 4. The first term 
of the left side in equation (37) is a function of 4, 
but the variation from the mean value is small 
compared with the second term as shown in 
Fig 4; therefore, the first term can be replaced 
by the mean value -C/2 and the relation be- 
tween V+ and S, is led from the coefftcients of 
cos 4 in equation (37) 

I/+ .6, = +J20 (38) 

FIG. 4. Variation of each term along I#J in equation (37). 

where we choose the positive sign for cooling 
the fluid and the negative sign for heating. The 
comparison of the variations in 4 for each term 
of equation (37) is shown in Fig. 4, by use of 
equation (38). 

3.5.2. Equation in circumferential direction. As 
equations (32) and (33) contain the velocity 
components and the temperature, integral limits 
must be carefully taken. 

(a) 6 < S,(l < 1). 

The pressure term in equation (33) can be 
obtained by integrating equation (32) from 5 
to BT with respect to r and shown as 

where P&. shows the value of equation (11) at 
r = &. 

The integral momentum equation of the 
boundary layer in the circumferential direction 
is obtained by substitution of the above equation 
in equation (33) and integrating it from zero to 
6, with respect to r. 
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6 

a s -V+sin4% o+dt - V +zsin& 
84 

0 

d 

x (6, - 6)sin4 + $ u+‘d5 

A discussion of equations (42) and (43) will be 
made later. 

(W 6 2 S,([ 2 1). 

In the same way as the case of 6 < &., inte- 
grating equations (32) and (33) we obtain 

Substituting equations (15) and (16) equation d 6 
(39) can be integrated. When 6rm is sufficiently 8 -- 
small compared with unity, and small terms in 84 ss 
it are neglected, it is reduced as follows: 6T dT 

&r d 
96 V+’ 
--cos4 

1 d2 
= -2 - 

35 6, 3 Ll 
8 sin 4 d< - s 0 sin 4 d<. (44) 

1 1 {( 4 1 

xReRa 8 r,- 
-- 

) v+%$ Pr 

cos q5 - 
2v+6, Pr + 

v::;;pr)+ 12$. (40) 

Eliminating I/+ from equations (38) and (40) 
the relation between S,,, and [, is obtained. 

$cos$ 

= i&ReRa{i(n - :) 

cos i#J cos2 4 

T 2420 + 20 

3- 12 J20 

- s; . 
(41) 

Equation (44) can be integrated, and as long as 
6, is very small compared with unity, small 
terms may be neglected, and the result is equal 
to equation (41), 6, is also shown by equation 
(42) or (43). 

3.6. Integral equation of energy 
3.6.1. 6 6 dn (c < 1). Considering that the 

velocity profile in the core region can be used 
for the region of 6 < 5 < 8r, the energy integral 
equation becomes 

6 

- 6)sin4 

Taking the mean value of equation (41) over 4. 
we get 

(42) 

The other relation for 6, and [,,, is found 
from the coefficients of cos 4 of equation (41) as 

+r+j-r+d<+r+]W-di=&($); (45) 

(43) Disregarding small terms, we obtain from 
equation (45) 
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(-1 + $r, - *r;) 
( 

@,V+ cosf#J - w:r+ 

Cr+ 
cos’4 + 2V+2 ~ cos3 (p 

) 
+ (+r, - +r;) 

x Wc+z+ sin2 4 - ( CT+ 
I/+ sin’ $I cos I$ 

> 

cos2 I$ . 
> 
(46) 

By taking the mean value of equation (46) over 
4, it reduces to 

This relation satisfies equation (28) obtained 
from heat balance. 

From coefficients of cos $J of equation (46) 
we obtain 

(1 - $[, + *C)e,v+ = SF. (47) 
In 

By substituting equations (25), (30) and (38) 
in equation (47) the following equation is 
introduced : 

ii Pr - [i(5Pr2 + 4Pr - 10) 

+ SC, Pr(4Pr + 1) - 25Pr2 = 0. (48) 

The thickness ratio c,,, = 6 J&,,, is given as a 
function of only Prandtl number and its 
relation is shown in Fig. 5 and &,, < 1 cor- 
responds to Pr = 1.105. For a specific Prandtl 
number, the terms in equation (46) vary with $I 
and it is shown in Fig. 6 for Pr = 1.105. Compu- 
tation of equations (42) and (43) by use of 
equation (48) shows that they are in agreement 
with at most 5 per cent difference for Pr = 1.105 ; 
therefore, equation (42) will be used to calculate 
6 rn. 

3.6.2. 6 > BT, ([ 2 1). Considering that the 
temperature profile in the core region can be 
extended to the region of 6 2 c > 6, the 
energy integral equation is written as follows : 

+ 7+/w+ dr = A($),,. (49) 

FIG. 5. Relations between 1;, and PT. 

Calculating the integrals in this equation, we 
obtain 

-+ 1 -;;+li o,v+cosc#l 
m ( m 551 >( 

cr+ 
- w:r+ cos2 4 + 2v+2 - cos3 i#J 

> 

+ I_’ f-4’+” 

{ ( r: 5 5, 5 r$ )I 

x 
( 

W:z+ sin24 - 
cr+ . 
Fsm24.cosd 

> 

=A& @,-!$os~+K 
( 2v+2 

cos2 4 . 
m > 

(50) 

The mean value over 4 of equation (50) satisfies 
equation (28) and from the coefficients of cos 4 
of equation (50) we obtain 

lO[z + 5cz Pr - (25 Pr + 4) ci Pr 

+ (20Pr + l)[,Pr - 5Pr2 = 0. (51) 

This relation is shown in Fig. 5 and [, > 1 
corresponds to Pr > 1.105. 
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L 0 

+ ss O.w+(l - t)drd+ 

0 &rm 

for 6, < 6,, 

nb 

@m=$ 
m IIS 

0. W+(l - r)drd4 

0 1 

Ed 

n/4 x/2 37v4 x 
#J 

o : ( Twin. rxcrpt forcos+ln Lmft hand )/tf$r+ 
+ 8. W+(l - <)dcd4 

b : (Twm of co&In Left hand )/W,‘T+ 
rS 
0 bn 

o+b : ( Loft hand I/t&+ T+ ZO 
c : ( Right hand Iit&+ T+ 

FIG. 6. Variation of each term along 4 in equation (46). + 

IS 

e.w+(l - <)dtdr$ 

&I 
I 

. 

Thus, V’, 6, and c,,, are determined respec- 
tively by equations (38, 42) and (48) or (51). Assuming S,,, and 6,, + 1 and neglecting smaller 

terms, the integration of the above equation 

4. NUSSELT NUMBER leads to 

Heat-transfer coefficients a in a fully de- 3 cz+ 
veloped region are defined by @ln =@, + gVf2. (55) 

0. = q/(L - &?I) (52) Substitution of equation (55) into equation 

where 4 is the mean heat flux over 4 at a section (51) introduces Nusselt number ratio Nu/Nuo as 

z, given by 

2n 

I. 

4=% W (53) 

0 

Nusselt number is defined by 

Nu=~=;$9C+-$) (54) 

where 0, is a dimensionless mixed mean 
temperature, shown by 0, = g/%x3 (t, - Q/v2 
and can be calculated as follows : 

for 6, > arm, 

nd 

2 
@,=- 

7zW,+ rsl 
0. W+(l - Zj)d<d4 

0 1 

where Nuo is Nusselt number for forced con- 
vective heat transfer under the assumption of 
Poiseuille flow in a uniformly heated tube and 
Nu,, = 48/l& &,, is shown by equation (48) or 
(51). Equation (56) is applicable in a region 
when Prandtl number is not far away from 
unity. 

5. RESISTANCE COEFFICIENT 

Resistance coefficients n for a fully developed 
forced laminar flow in a horizontal tube are 
also affected by a secondary flow. The definition 
of resistance coeffkient is expressed by 

4c 
n& 
si 

A=-. 
+ 0 . w+(l - [)dtd4 W,” 

0 &Pa The assumption that 6, 4 1 and substitution of 
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equations (21) and (26) in this equation give A 
and the ratio of resistance coefficients, A/A, is 
calculated by 

A 1 
-= - = .,I,,~ 
& 26, 

(57) 
m 

where A,, shows the resistance coefficient for 
Poiseuille flow and A, = 64/Re. From equation 
(57), it is clear that resistance cocfhcients also 
increase with increasing ReRa. Au increase of 
Prandtl number causes a decrease of, resistance 
coefftcient, because the thickness of, the velocity 
boundary layer increases as shown by equation 

(42). 

6. DISC.USSXOI’l OF RESULTS 

6.1. Velocity and temperature distributions 
The profiles of velocity and temperature in 

the core region are given by equations (9) and 
(10) and expressed as follows : 

W+ 

w,’ 
= 1 f +W#J 

J 

where the double sign takes positive for heating 
the fluid and negative for cooling and the profile 
in C#J = 0 or IC shows one in the vertical plane 
and that in 4 = n/2 or 3x/2 shows one in the 
horizontal plane. These equations were ob- 
tained on the assumption that 6, 3 1 or 
a,,,, 4 1 and the condition for 6, < O-1 is 
obtained when ReRa 2 6.67 x 10’ for Pr = 
0.72 from equation (42). These results are 
asymptotic solutions for large Re Ra. Com- 
parisons with experimental data [3] with Re Ra 
of about lo5 for air (Pr = 0.72) are shown in 
Fig 7 for velocity profile and in Fig. 8 for 
temperature profile. 

Equation (58) does not contain ReRu but 

upwurd I/O dowward 
&?/lb 

0: 320X10s Eqerlmental dais 
X: O~89Xto0 I for air W=O,72) 
9olld line : Throreticol curve 

FIG. 7. Velocity distributions at q5 = 0, L. 

-1.0 -0.5 0 I.0 

Upwd r/a dcunward 
ReRa 

0: 
x : 

3.20X4 Experlmental data 
049XIO 1 fa air (p~O.72) 

‘Solid line : Theoretical curve 

FIG. 8. Temperature distributions at Cp = 0, x. 

the experimental results are affected by ReRa 
and tend to approach to the theoretical profile 
with increasing ReRu. This is due to the fact 
that experiments are not done at ReRu large 
enough to neglect 6, compared with unity. 
In calculating heat-transfer coefficients, a mixed 
mean temperature in the core region is an im- 
portant factor, and in spite of little difference 
between theoretical and experimental profiles, 
the mixed mean temperatures in both profiles are 
nearly equal, therefore it is considered that 
heat-transfer coefficients calculated from experi- 
mental results are in rather good agreement 
with theoretical prediction. 
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6.2. Nusselt number 

YASUO MORI and 

From equation (56) we obtain 

Nu/NuO = O-1634 (ReRa)* for Pr = 0.72 

(59) 

Nu/Nu, = 0.1929 (Re Ra)’ for Pr=l. 

(60) 

With Prandtl number as a parameter, the 
relations of Nu/Nu, vs. Re Ra are shown in 
Fig. 9. Morton’s solutions for Pr = 1, 0.72 are 
also shown in the range of small Re Ra, and 
the solution is given by- 

Nu 
- = 1 + (0.1036 - 0.0007 Pr 
Nuo 

+ . . . 

where the coefficients of the second term are 
our collected values, because Morton’s results 
have included some errors. 

KOZO FUTAGAMI 

with the experimental result, because the theo- 
retical curve extended to the range of Re Ra = 
lo4 is not much different from the Morton’s 
curve. 

In the present analysis, for the velocity and 
the temperature distributions in the boundary 
layer, simple profiles are assumed and particu- 
larly in the thin part between the velocity and 
the thermal boundary layer, the approximation 
is not good enough. Consequently, equation 
(57) is correctly applicable to fluids having 
Prandtl number not far from unity. 

In case a large temperature difference exists 
between fluid and wall, the effect of temperature 
dependent physical properties should be taken 
into account with effects of secondary flows. 

7. CONCLUSION 

Visual experiments and a theoretical analysis 
for effects of a secondary flow on forced con- 
vective laminar heat transfer and flow resistance 
for a fully developed flow in a horizontal tube 

104 KY 106 107 

t?e Ra 

FIG. 9. Nu/Nu,--Re Ra diagram. 

The experimental data for air (Pr = 0*72), 
expressed in the 1st report are also shown by 
circles in Fig. 9. For Pr = 0.72, Nusselt number 
begins to increase at ReRa = lo3 from Nue 
(=48/l 1) with increasing ReRa, due to a 
secondary flow and in very large ReRa, it is 
given by equation (59). As shown in Fig. 9, the 
theoretical results may be applicable in the 
range of Re Ra > lo4 and is in good agreement 

with constant heat flux at the wall have been 
done and the results obtained are summarized 
below. 

(1) From visual experiments, it is confirmed 
that the center of the vortex of the secondary 
flow, due to free convection, comes near to 
the tube walI with increasing ReRa. 

(2) On the assumption of a boundary layer 
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along the tube wall and by use of the 2. 
bounda~-layer integral method, the rela- 
tions between Nusselt number and ReRa 3 

’ are obtained in the region of Pr not far 
from unity. 

(3) The theoretical results are in comparatively 
good agreement with the experimental re- 4. 

sulk3 for air. 

(4) Resistance coefficients are given by equation ” 
(57) as a function of Re Ra and Pr. 6. 
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R&&Les effets de la force d’Archimtde sur le transport de chaleur par convection for& laminaire 
dam un tube horizontal chauffk uniformement ne peut pas hre nCgIig& pour de grandes valeurs de ReRa. 
Ce deuxi*me rapport at rait & une &ude theorique de ce probleme dans un 6coulement laminaire enti&et 
ment Ctabli et I'on compare ses r&suItats avec Ies r&.uItats expbimentaux expos&s dans le premier rapport. 

AIin de justifier les hypoth&es effect&a dans I’analyse qui suit, lea configurations d%couIement second- 
aire dues B la force d’ArchimMe sent observQs dans des expkriences de visualisation d%coulement. Une 
solution approchix: pour de trb grands ReRa est obtenue. Les nombres de Nusselt sent fonctions de ReRa 
et de Pr, et enassezbon accord avecles r&sultatsexp&imentaux surl’air. Les coefficients de rbistance sont 

aussi obtenus en fonction de ReRa et de Pr. 

Z~m~~g-~r EinfIuss der Auftrieb~r~fte auf den W~me~~rgang bei erzwungener Laminar- 
str~mung in einem gleich~~ig beheizten waagerechten Rohr darf bei grossen ReRa nicht vernachl~ssigt 
werden. Diese zweite Arbeit behandelt eine theoretische Untersuchung des Problems fti voll ausgebildete 
Laminarstriimung und vergleicht die Ergebnisse mit den experimentellen Werten der ersten Arbeit. 

Urn Annahmen der Analyse zu bekrtitigen, wurden die Muster der sekundtien Auftriebsstriimung 
sichtbar gemacht und beobachtet. Eine Niiherungsliisung fiir sehr grosse Re Ra Iiess sich erhalten. Nusselt- 
Zahlen sind als Funktion von Re Ra und Pr wiedergegeben, und es zeigt sich ein ziemlich guter Zusammen- 
hang mit Versuchswerten in Luft. Auch Widerstandskoeffizienten sind als Funktion von Re Ra und Pr 

angegeben. 

AHEoTa~n~-~p~ 6onbnxax Re@ Hejlbari np~~e6peqb B~KaK~eM noA~eMHo~ CKJW Ka 
Ten~OO6~teHB~a~KHapHOK nOToHenpEtB~Hy~AeHHO~KOHBeKrtllilBOAHOpOAHOHa~poBae~O~ 
ropaaonTaabHoa Tpybe. B aToSI cTaTbe AaeTcn TeopeTwiecKoe wzrexoBaHKe aTor sonpoca 
npU nOJlHOCTbH) PaaBHTOM JlaMHHapHOM Te9eHHIi, n peByJlbTaTbI CpaBHHBaiOTCR C aKCllepH- 
MeHTaJlbHbIMK AaHHblMU, npHBeAeHHbIMH B npeAblAyWeZt CTaTbe. ,&Ifl nOATBepmAeHUU 
AOnymeHKt,CAeJlaHHbIXBAaHHOM aHaJlU3e,HapTKHL.lBTOpIlYHOl'O nOTOKaBaC=teTnOA%oMHOtl 
CEIJIH Ha6JnOAanHCb c noMombto BKayanm3asKK noToKa. Ilonylreno npn6nameHHoe pemeHKe 
npn OqeHb 6OnbmKX ReRa. HoKaaaao, tIT0 qncaa HyCCenbTa,BbIpameKH~eBBKAe#yHKqnK 
& Ra &i Pr, XOpOmO COrnaCyIOTCH C oKCllepHMeHTaJIbHblMM peayJIbTaTaMK AJIB BoaAyxa. 

~oa~~K~~enT~ ConpoTKB~eHKn TaKH(e nonyreHn B BrzAe ~~HKQHU ReRa HP~. 


